The Worpitzky identity for the groups of signed and even-signed permutations

نویسندگان

چکیده

The well-known Worpitzky identity $$\begin{aligned} (x+1)^n = \sum \limits _{k=0}^{n-1} A_{n,k} {{x+n-k} \atopwithdelims (){n}} \end{aligned}$$ provides a connection between two bases of $$\mathbb {Q}[x]$$ : the standard basis $$(x+1)^n$$ and binomial $${{x+n-k} (){n}}$$ , where Eulerian numbers $$A_{n,k}$$ for symmetric group serve as entries transformation matrix. Brenti has generalized this to Coxeter groups types $$B_n$$ $$D_n$$ (signed even-signed permutations groups, respectively) using generatingfunctionology. Motivated by Foata–Schützenberger’s Rawlings’ proof in group, we provide combinatorial proofs generalizations their q-analogues . Our utilize language P-partitions - -posets, introduced Chow Stembridge, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MacMahon-type Identities for Signed Even Permutations

MacMahon’s classic theorem states that the length and major index statistics are equidistributed on the symmetric group Sn. By defining natural analogues or generalizations of those statistics, similar equidistribution results have been obtained for the alternating group An by Regev and Roichman, for the hyperoctahedral group Bn by Adin, Brenti and Roichman, and for the group of even-signed per...

متن کامل

Statistics on Signed Permutations Groups ( Extended Abstract )

Abstract. A classical result of MacMahon shows that the length function and the major index are equidistributed over the symmetric groups. Through the years this result was generalized in various ways to signed permutation groups. In this paper we present several new generalizations, in particular, we study the effect of different linear orders on the letters [−n, n] and generalize a classical ...

متن کامل

Pairings and Signed Permutations

Identity (1) is easy to prove: note that the left side is a convolution, so multiply it by xn , sum, and recognize the square of a binomial series. But a combinatorial interpretation of the same identity is not so easy to find. In [3], M. Sved recounts the story of the identity and its combinatorial proofs. She relates how, after she challenged her readers (in a previous article) to find a comb...

متن کامل

the crisis of identity in jhumpa lahiris fiction: interpreter of maladies and the namesake

شکل گیری هویت(identity) مقوله مهمی در ادبیات پراکنده مردم(diasporan literature) می باشد. آثار جومپا لاهیری(jhumpa lahiri) ، نویسنده هندی آمریکایی، در سالهای اخیر تحسین منتقدین را به خود معطوف کرده است. وی در این آثار زندگی مهاجران و تلاش آنان برای پیدا کردن جایگاهشان در یک فرهنگ بیگانه را به تصویر کشیده است. این تجربه همواره با احساساتی نظیر دلتنگی برای گذشته، بیگانگی و دوری همراه است. با این ح...

15 صفحه اول

Computing signed permutations of polygons

Given a planar polygon (or chain) with a list of edges {e1, e2, e3, . . . , en−1, en}, we examine the effect of several operations that permute this edge list, resulting in the formation of a new polygon. The main operations that we consider are: reversals which involve inverting the order of a sublist, transpositions which involve interchanging subchains (sublists), and edge-swaps which are a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2021

ISSN: ['0925-9899', '1572-9192']

DOI: https://doi.org/10.1007/s10801-021-01056-4